Silicium-Verbindungen mit starken intramolekularen sterischen Wechselwirkungen, 39¹⁾

Ein spirocyclisches Silan aus einem 2,2-Dimesityldisilan

Manfred Weidenbruch*^a, Youlin Pan^a, Karl Peters^b und Hans Georg von Schnering^b

Fachbereich Chemie der Universität Oldenburg^a, Carl-von-Ossietzky-Straße 9-11, D-2900 Oldenburg Max-Planck-Institut für Festkörperforschung^b, Heisenbergstraße 1, D-7000 Stuttgart 80

Eingegangen am 23. November 1989

Key Words: Disilanes / Spiro[1,2-disilaindan-1,1'(2'H)-[1]silacyclobutene] derivative

Silicon Compounds with Strong Intramolecular Steric Interactions, 39¹¹. – A Spirocyclic Silane from a 2,2-Dimesityldisilane

Treatment of 1,1-Di-*tert*-butyl-1,2-dichloro-2,2-dimesityldisilane (3) with lithium *tert*-butylamide gives the spirocyclic silane 5 by a twofold intramolecular ring formation reaction. The X-ray structure analysis of **5** reveals strong deviations from the idealized tetrahedral geometry at the spirocyclic silicon atom.

1,2-Dihalogentetraorganyldisilane ergeben mit den unverzweigten Lithiumamiden LiNHR ($\mathbf{R} = \mathbf{H}$, Me, Et) meist glatt die entsprechenden 1,2-Diaminodisilane²⁻⁵). Eine Sonderstellung nimmt 1,2-Dichlortetramesityldisilan ein, das zwar mit Lithiumamid noch einen zweifachen Chlorid/Amid-Austausch eingeht⁵), mit Lithiumisopropylamid hingegen das Tetrahydrodisilocin-Derivat 1⁵) und mit Lithium-*tert*-butylamid das bicyclische System 2⁶) liefert.

Die Bildung von 2 legt die Vermutung nahe, daß die Reaktion durch den Angriff des verzweigten Amids auf eines der aciden *ortho*-Methyl-Wasserstoff-Atome⁷⁾ unter *tert*-Butylamin-Eliminierung eingeleitet wird, an den sich die Lithiumchlorid-Abscheidung und der erste intramolekulare Ringschluß anschließen. Die Wiederholung dieses Vorgangs sollte zum Bicyclus 2 führen. Obgleich experimentell bisher nicht nachweisbar, sollte die weitere Einwirkung des Amids auf 2 unter Si-Si-Bindungsspaltung den Achtring 1 ergeben.

Um den vorgeschlagenen Mechanismus⁶⁾ zu sichern, haben wir 1,1-Di-*tert*-butyl-1,2-dichlor-2,2-dimesityldisilan⁸⁾ (3) mit Lithium*tert*-butylamid umgesetzt, das bei einem analogen Reaktionsablauf nach Schema 1 zunächst den Fünfring 4 und schließlich den Spirocyclus 5 liefern sollte.

Isoliert werden farblose Kristalle, deren analytische und spektroskopische Daten mit dem Konstitutionsvorschlag 5 vereinbar sind. Gesichert wird er durch die Röntgenstrukturanalyse (Abb. 1), die einige Besonderheiten aufzeigt. Beide Enantiomere von 5 treten paarweise in der Elementarzelle auf. Während die Si-C-Bindungslängen nicht wesentlich vom Normalabstand abweichen, ist die Si-Si-Bindungslänge deutlich gegenüber der im Disilan 3 ($\overline{d} = 240$ pm) verkürzt. Innerhalb der zentralen Ringe treten erwartungsgemäß die kleinsten Bindungswinkel an den beiden Silicium-Atomen auf. Zusammen mit der Einbindung in den Vier- bzw. Fünfring führt dieses am spirocyclischen Silicium-Atom zu einer drastischen Aufweitung der exocyclischen Winkel und zu erheblichen Abweichungen von der idealen Tetraedersymmetrie.

Schema 1

Die Bildung von 5 aus 3 und die Isolierung der Ringsysteme 1 und 2 lassen den vorgeschlagenen Reaktionsweg als schr plausibel erscheinen.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Förderung unserer Arbeiten.

Abb. 1. Struktur von 5 im Kristall (ohne H-Atome). Ausgewühlte Bindungslängen [pm] und -winkel [°] (Standardabweichungen)]: Si(1) – Si(2) 235.2(2), Si(1) – C(16) 189.8(4), Si(1) – C(17) 189.5(6), Si(1) – C(18) 188.9(5), Si(2) – C(3) 193.4(5), Si(2) – C(9) 187.9(5), Si(2) – C(10) 188.6(4); C(3) – Si(2) – C(9) 75.9(2), C(4) – C(3) – Si(2) 86.0(3), C(3) – C(4) – C(9) 107.4(4), C(4) – C(9) – Si(2) 90.7(3), Si(1) – Si(2) – C(10) 92.9(2), Si(1) – Si(2) – C(9) 127.7(1), Si(1) – Si(2) – C(3) 123.8(2), C(3) – Si(2) – C(10) 118.7(2), C(9) – Si(2) – C(10) 121.0(2)

Experimenteller Teil

¹H- und ¹³C-NMR (CDCl₃): Bruker AM 300. – MS: Varian-MAT 212. – Elementaranalyse: Analytische Laboratorien, D-5250 Engelskirchen.

2,2-Di-tert-butyl-4',5,6',7-tetramethylspiro[1,2-disilaindan-1,1'-(2'H)-[1]silabenzocyclobuten] (5): Zu einer Suspension von Lithium-tert-butylamid, erhalten aus 5.25 ml (50.0 mmol) tert-Butylamin und 15.6 ml (25.0 mmol) 1.6 M n-Butyllithium-Lösung in n-Hexan, wurden 1.68 g (3.50 mmol) 38 in 45 ml THF getropft, und das Gemisch wurde 30 h zum Rückfluß erhitzt. Die Lösungsmittel wurden gegen Petrolether (Siedebereich $40-60^{\circ}$ C) ausgetauscht, die Salze abfiltriert, und der Petrolether wurde abdestilliert. Chromatographie des Rückstands an einer Kieselgel-60-Säule mit Petrolether als FlicBmittel und nachfolgende Kristallisation aus Accton ergaben 0.58 g (41%) farblose Kristalle von 5, Schmp. $133 \,^{\circ}\text{C.} - {}^{1}\text{H-NMR}$: $\delta = 1.12$ (s, 9 H), 1.14 (s, 9 H), 2.10 (s, 3 H), 2.19 (s, 3 H), 2.32 (s, 3 H), 2.35 (s, 3 H), 2.43 (s, 2 H), 2.58 (s, 2 H), 6.74 (s, 1 H), 6.79 (s, 1 H), 6.85 (s, 1 H), 7.01 (s, 1 H). - ¹³C-NMR: $\delta =$ 19.35, 20.01, 20.15, 20.60, 21.28, 21.80, 21.89, 29.62, 29.88, 124.47, 127.48, 128.60, 128.79, 134.80, 140.19, 140.67, 140.90, 140.94, 145.60, 151.62, 152.24. – MS (EI, 70 eV): m/z (%) = 406 (75) [M⁺], 349 $(100) [M^+ - C_4 H_9].$

C₂₆H₃₈Si₂ (406.8) Ber. C 76.77 H 9.42 Gef. C 76.67 H 9.29

Röntgenstrukturanalyse von 5: C₂₆H₃₈Si₂; $M_r = 406.76$; a = 1530.5(3), b = 1670.9(5), c = 1046.0(3) pm; $\beta = 108.89(2)^\circ$; $V = 2531(1) \cdot 10^6$ pm³; Z = 4; $D_{ber.} = 1.076$ g · cm⁻³; $\mu = 0.14$ mm⁻¹; monoklin, Raumgruppe P_{2_1}/n . Diffraktometer: Nicolet R 3 m/V; Mo-K_α-Strahlung, Graphit-Monochromator, Kristallgröße 0.55 × 0.70 × 0.25 mm, Wyckoff-Scan, $2\Theta_{max} = 55^\circ$ in $h \ k \ \pm l$. Unabhängige Reflexe: 5854, davon 3190 beobachtet [$F > 3 \sigma(F)$].

Tab. 1. Ortsparameter (\times 10⁴) und isotrope Temperaturkoeffizienten (\times 10⁻¹) [pm²] (Standardabweichungen) von 5

	x	у	Z	U(eq)
Si(1)	3675(1)	8325(1)	1607(1)	60(1)
Si(2)	4838(1)	7666(1)	995(1)	60(1)
C(3)	5019(3)	6519(3)	1097(5)	75(2)
C(4)	4933(3)	6564(3)	-369(5)	65(2)
C(5)	4958(3)	5971(3)	-1286(6)	7 6 (3)
C(6)	4884(3)	6193(4)	-2589(6)	76(3)
C(7)	4800(3)	6989(4)	-2937(5)	73(2)
C(8)	4763(3)	7598(3)	-2039(6)	67(2)
C(9)	4824(3)	7377(3)	-747(5)	59(2)
C(10)	5778(3)	8327(3)	2106(4)	57(2)
C(11)	6690(3)	8379(3)	2080(5)	64(2)
C(12)	7 303 (3)	8917(3)	2922(5)	73(2)
C(13)	7044(3)	9427(3)	3783(5)	69(2)
C(14)	6152(3)	9373(3)	3825(5)	71(2)
C(15)	5522(3)	8825(3)	3018(5)	60(2)
C(1 6)	4566(3)	8759(3)	3165(5)	76(2)
C(17)	2838(4)	7679(3)	2148(6)	79(3)
C(18)	3152(3)	9170(3)	403(5)	73(2)
C(19)	3311(5)	6947(4)	2883(7)	14 6 (5)
C(20)	2 020(4)	7403(4)	966(7)	149(4)
C(21)	2 454(4)	8131(3)	3117(6)	109(3)
C(22)	2 582(4)	8856(4)	-1012(6)	118(3)
C(23)	2541(4)	9728(3)	889(7)	1 26 (4)
C(24)	3950(3)	9676(3)	229(6)	93(3)
C(2 5)	4922(4)	5573(3)	-3622(6)	114(3)
C(26)	4711(4)	8459(3)	-2483(5)	101(3)
C(27)	7025(3)	7863(3)	1154(5)	88(3)
C(28)	7714(3)	10020(3)	4653(6)	105(3)

Lösungsmethode (SHELXTL-PLUS): Direktes Verfahren, Verfeinerung nach "Full-Matrix Least-Squares". Die Positionen der Wasserstoff-Atome wurden berechnet und isotrop verfeinert. Parameter/ F_o -Verhältnis: 0.08; R = 0.086, $R_w = 0.073$. Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54257, der Autorennamen und des Zeitschriftenzitats angefordert werden.

CAS-Registry-Nummern

3: 100420-55-1 / 5: 124686-49-3

- ¹⁾ 38. Mitteilung: M. Weidenbruch, B. Brand-Roth, S. Pohl, W. Saak, Angew. Chem. **102** (1990) 93; Angew. Chem. Int. Ed. Engl. **29** (1990) 90.
- ²⁾ U. Wannagat, M. Schlingmann, H. Autzen, Chem.-Ztg. 98 (1974) 111.
- ³⁾ O. J. Scherer, W. Glässel, R. Thalacker, J. Organomet. Chem. 70 (1974) 61.
- ⁴⁾ U. Wannagat, H. Autzen, M. Schlingmann, Z. Anorg. Allg. Chem. 419 (1976) 41.
- ⁵⁾ M. Weidenbruch, Y. Pan, K. Peters, H. G. von Schnering, Chem. Ber. **122** (1989) 885.
 ⁶⁾ M. Weidenbruch, Y. Pan, K. Peters, H. G. von Schnering, Chem.
- *Ber.* **122** (1989) 1483. ⁷⁾ E. W. Turnblow, R. J. Boettcher, K. Mislow, *J. Am. Chem. Soc.*
- 97 (1975) 1766.
 ⁸⁾ M. Weidenbruch, K. Kramer, K. Peters, H. G. von Schnering,
- Z. Naturforsch., Teil B, 40 (1985) 601.

[381/89]